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J. Phys. A :  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

The metric of moving bodies 

P. RASTALL 
Department of Physics, University of British Columbia, Vancouver 8, B.C., 
Canada 
MS.  received 21st October 1969 

Abstract. The asymptotic form of the metric due to moving masses IS calcu- 
lated in terms of that due to a stationary mass. The work is modelled on the 
special-relativistic calculation of the electromagnetic field of moving charges 
from the Coulomb field of a stationary charge. The effects of acceleration and 
of terms not linear in the masses are neglected. 

The Lense-Thirring metric for a slowly-rotating spherically symmetric 
body is derived. It is shown that the precession of spinning satellites, the de- 
flection of starlight by the Sun, and the Shapiro time-delay are all determined 
by the same parameter in the metric. 

The approximate metric due to an arbitrary moving mass distribution is 
shown to satisfy the linearized Einstein field equations. 

1. Introduction 
If one knows Coulomb’s law (that is, the field due to a stationary charge), and 

if special relativity is valid, then one can calculate the electromagnetic field due to 
quite general current distributions. First one finds the field of an unaccelerated 
charge by Lorentz transformation of the Coulomb field. Then one argues that the 
same expression is approximately valid for a slowly accelerated charge, and that the 
field of an arbitrary set of such charges is the sum of their individual fields. 

We shall use these results of special relativity as a model for a discussion of the 
gravitational field. The gravitational analogue of Coulomb’s law is the expression for 
the metric due to a stationary, spherically symmetric body. We do not at first commit 
ourselves to any particular theory or field equations, but regard this metric as some- 
thing to be determined empirically. There is no Lorentz covariance in a general 
spacetime, but we assume that spacetime is asymptotically flat in spatial directions, 
and we can then define a kind of asymptotic Lorentz covariance. This enables us 
to find an asymptotic expression for the metric due to a moving body. The contribu- 
tions to the metric from different bodies are additive in the asymptotic region, and 
one can therefore calculate the asymptotic form of the metric due to a quite general 
mass distribution. I n  particular, for a spherically symmetric slowly-rotating body, 
the metric is of the familiar non-diagonal Lense-Thirring form. A slightly surprising 
result of the analysis is that the measurement of the deflection of starlight by the 
Sun, the Shapiro time-delay experiment, and the proposed measurement of the 
precession of a spinning satellite, should give the same information about the metric. 

In  the last part of the paper we show that the approximate metric we have calcu- 
lated satisfies the linearized Einstein field equations. 

2. Generalized Minkowski charts 
We are going to consider only spacetimes on which a certain kind of coordinate 

system can be defined. In  these coordinate systems, which are called generalized 
_$i%akowski charts, the metric tends asymptotically to the Minkowski form at spatial 
infinity. We begin by making these vague statements more precise. 
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Assume that spacetime X is geodesically complete. Let I? be the set of all space- 
like geodesics, F :  X -+ R1 be a function, and n E RI. Then F is said to be O(Ln) 
(and we write F = O(Ln)) if I F ( y ( ~ ) ) u - ~ l  is bounded as u -+ F a3 for all y E I?. 
If the coordinates of the point p are x = ( xo ,  x l ,  x2, x3) in some chart, and if 
f ( x )  = F ( p )  for a l lp  E E, then we also write f = O(Ln). 

A chart S :  E -+ R4 with coordinates x is defined to be a generalized Minkowski 
chart if the components g,, of the metric in S are given by 

where 

(Lower case Latin and Greek indices have the ranges (1, 2, 3) and (0, 1 ,2 ,  3) 
respectively, and the summation convention applies to these indices only). The  
condition that the domain of S be the whole of X is convenient, but probably not 
essential. 

We assume that the conditions we have just imposed on the metric can be satis- 
fied in some chart S if the sources of the gravitational field and all gravitational 
radiation are confined to a bounded region on each spacelike hypersurface. The  
conditions then tell us the limiting behaviour of the metric as the distance from the 
sources tends to infinity. Very often, however, we need to know how the metric at 
a given point depends on the nature of the sources. We shall usually consider a 
family of spacetimes labelled by a real parameter M ,  which we may loosely regard as 
the total mass of the sources, and we assume that huy(x) = O ( M )  as lki’ --f 0 for each 
fixed x. (We shall write this simply as h,, = O(M)).  It follows that h,,,). = O(lL!), 
and similarly for the higher derivatives. We extend the notation in the obvious way: 
i f f  = O(LP), g.= O(k fn ) ,  then f + g  = O(LP)+O(Mn), f g  = O(LPMn), etc. 

Before continuing the discussion of generalized Minkowski charts, we recall 
some definitions and elementary results of special relativity. The  4 x 4 matrix (L”) 
is a Lorentz matrix if Li E R1 and q,,LVLL”, = T ~ ~ .  The Lorentz matrix (Lv) is a 
restricted Lorentz matrix if det(Lv) = 1 and Lo > 0 ;  it is a Lorentz matrix without 
rotation of the spatial axes if Lv = Lt. Any restricted Lorentz matrix without rotation 
of the spatial axes can be written (L@)), where 

guv = T u v  + huv 

T m n  = am,, q u o  = - 8 u o )  huv = O(L-l)- 

(2.1) 

and 
1 

If S and S’ are inertial charts with coordinates x and x’ respectively, cE is the speed 
of light, and x‘fi = L,(p)xv, then cEP is the velocity in S of a particle which is station- 
ary in s’. 

is much larger than 
the set of Minkowski charts in flat spacetime. Fortunately, there is no need for us 
to determine the whole set (for discussion of a similar problem see Bondi et al. 1962, 
and Sachs 1962). We require only a subset R(m) of the set of generalized Minkowski 
charts, where h ( m )  is in one-to-one correspondence with the set of real three-vectors 
f3 that satisfy ,8 < 1, and m is a set of parameters that determine the material sources 
of the gravitational field. We suppose that these sources can be regarded as a super- 
position of a denumerable set of mass distributions, each of which is stationary 

The  set of generalized Minkowski charts in the spacetime 
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in one of the charts of R(m). We take mA to be the total proper mass which is sta- 
tionary in S , ~ h ( m )  for A = 0, 1, 2, ... . For simplicity we consider a set of 
mass distributions that are entirely determined by the mA, so that we may put 
m = (mo, m,, m2, ...). 

Under the one-to-one correspondence between h ( m )  and ((3 E R31p < l}, we 
take SA to correspond to P A ,  and Po = 0. If the coordinates of S A  are xA, we assume 
that 

xi = L: (PA)x i  ffp(xO) P A )  m> (2.3) 

wherefi”(x,, 0, m) = 0,  fi”, = c?p/c?xE = O(L-2)  for fixed P A  and m, andfb = O ( M )  
for fixed xo and P A ,  with M = Em= OmB. We call V A  = cEPA the asymptotic aelocity 
of SA in So. For smallfil it is approximately the velocity in So of a particle fixed in 

The  components of any tensor (or tensor field) t in S A  will be written t””,:::. It 
S A .  

is assumed that in any chart SA the components of the metric satisfy 

m 

g:v = qi~v f 2 mBg:,v + o(M2) + o(L-2) (2.4) 
B=O 

where the gip, are independent of the mB and g&, = O(L-I),  and where the limit 
M -+ 0 is to be taken in such a manner that the ratios mA/iW stay constant. It follows 
from (2.3) that if (2.4) holds for any SA E R(m), then it holds for all SA E h(m) .  

It is assumed that the gj,, are known: that is, we know how to solve the problems of 
gravitostatics to first order in mA in any chart SA E R(m). Using (2.3) again, one has 

If mB = 0 for B # A, then (2.4) becomesg,, = qiLV+mAgAilY+ O(-M2)+ O(L-2).  

0 
gB,V = L:(PB)L;(63B)gEno f o(M2)  + o(L-2)  

and substituting in (2.4) gives 
m 

g,”v = 1711, f 2 mBL;(PB)LE(PB)g”Bj2,  + o(M2) f o(L-2)* (2.5) 
B=O 

In  the theories of gravitation that are usually considered, the terms in the expression 
for g:, that are O(lV2) are also O ( J ~ - ~ ) ,  and one can therefore replace the last two 
terms in equation (2.5) by 0(iW2L-’). 

Before one can use (2.5) to calculate the metric due to a moving body, one must 
specify the functions g t , .  We assume that 

where y A  = [(x2-ai)(x2-az)]1/2,  and p ,  q, a: are constants. It follows that, in 
the special case when mB = 0 for B # A, equation (2.4) becomes 
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One can regard (2.7) as giving the metric due to a particle of proper mass mA fixed 
in S A  at the point with spatial coordinates a?. Thus in assuming (2.6) we are taking 
the mass distribution to consist of a set of particles, each stationary in one of the 
generalized Minkowski charts of A(m). In  order that the theory should reduce to 
Newton's in the appropriate limit, one must have q = ~GEcE-', where GE is the 
Newtonian gravitational constant. 

An important physical assumption which is contained in (2.6) is that the constants 
p and q are the same for all the charts of A(m). This assumption, which is related 
to Mach's principle, is our generalization of the special-relativistic hypothesis that 
all Minkowski charts are equivalent. Intuitively speaking, it means that the metric 
produced in an initially Minkowski chart S by putting a stationary particle of given 
proper mass into it is independent of how one chooses S. 

T o  find the metric of a system of particles in the generalized Minkowski chart 
So, one has only to substitute (2.6) in (2.5). Using (2.2) and the equation 
qpvLu,Ll = qZp, we find 

03 

gfiv(x) = q f i v  + 2 mAyA l[$qfiv + @ + 4)pAf ipAuYA21 + O(Mz)  + o(L-2)  (za8) 
A =  0 

where P A O  = - 1, and where we have simplified the notation by writing x in place 
of xo and g,, in place of gEu. 

xu 
be the So coordinates of the points whose S A  coordinates are a$ and x i  respectively. 
Define r z o  = x m - u l 0 ,  yA0 = ( Y ~ ~ T ~ O ) ~ "  = I X - L Z A ~ ~ ,  and a:o = x o - y A 0 .  The 
constant U: is so far arbitrary. We now choose it SO that qpv(xu - azo)(xv - a:,) = 0, 
xo > azo. Using (2.3) and the conditions imposed on thef", we find that 

We must express y A  in terms of the So coordinates. Let U: E R1, and let 

(2.9) 
- 1  

y A  [YA(yAO -pAmY$)l  + O(IML-')* 

The equations of the world line of particle A in So can be written xlo = r m ( g ) ,  
x80 = U ,  where U E  R1. We regard particle A as corresponding to a proper mass 
density p A  in So, given by 

f A b )  = f A ( Y o ,  Y )  = mAs3(y- x(Yo))  \I 

i m 

= mA I S3(y - x(u))S(y0 -U) du. 
- m  

(2.10) 

If G:R4 --f R1 is a smooth function, then a short calculation (cf. the derivation of 
the Liknard-Wiechert potentials in electromagnetism) shows that 

S P A ( ~ O - R , Y ) R - ~ G ( N O - R ,  y) d3y 
= mAG(2.60, X ( U o ) ) [ X o - U o  f 7 T m ' ( U o )  (7Tm(Uo) - xm)] - l  

where the integral is over all (yl, y2, y3)  E R3, R = 1 X- Y I  = [(x -y m)(x m-y m ) ] 1 / 2 ,  

and uo is defined by u0 + I x - x(u0)J = xo. I t  follows from the previous definitions 
that u0 = aAO, rm(u0)  = azo, T " ( u ~ )  = VAncE1 = P A m ,  and from (2.9) that the 
right-hand side of (2.11) is 

0 

mAG(xO-rAo, X - ~ A O ) Y A ( ? ' A - ~ $  O(ML-')). 
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If we define c,P(y) to be the three-velocity of the mass distribution in So aty,  and 

and (2.8) becomes 
r(Y) (1-fi2(y))-1'2, then P A  = P(xo-yAO, rAO), Y A  = y(xo-rAO, x- ~ A o ) ,  

g&dx> = VuVf ~~(Y)'-'~-'(Y)[P?LY+~+~)~~(Y)~Y(~)~~(~)~]Y'=~~- R d3y 

i-O(fiPL-2) (2.12) 
where p = C2=.0pA is the So proper mass density (the total proper mass per unit 
three-volume in So), and where we assume that the terms O ( L - 2 )  in (2.8) are also 
O(M2) .  

One shows by the usual limiting procedure that (2.12) also gives the metric due 
to a continuous mass distribution. I n  this case p and p are continuous functions 
which we shall take to be piecewise smooth and of bounded support. The  field 
equation for g,, that follows from (2.12) is 

TjaPg,v,nP = - 47w-1[P7?&v + (P + dPuPvr21 + 0P2) (2.13) 
where the comma denotes the partial derivative with respect to the x,. 

Define the proper mass density p p r  by ppr = py-' (this is an invariant quantity). 
The  covariant components of the four-velocity of the mass distribution are 
U, = yfiUcE+ O(M) ,  because g,, = quv+ O(M).  The covariant components of the 
energy-momentum density of the mass distribution are Tu, = ppru,u, = O(M),  and 
hence p p r  = c ~ ~ ~ ~ ~ ~ T ~ ~ + O ( M ~ ) .  We can now rewrite (2.12) and (2.13) as 

guy(.) = ~ L L V + ~ ~ ~  1 R-l[-pq.PT?tP(y) ?LV+(P+q)TUY(Y)lYo= x a - R  d3y+O(M2) 
(2.14) 
(2.15) 

- 2  
?npggv,no = - 4 n c ~  [-PqnpTnpr),,+(P+q)T,,I + O ( M 2 ) .  

One proves easily from (2.14) that 

~ V n g L " , n w  -~rlvngvn,,(x) 

= C E  J ' - '[HP - 4)7?vn%c,,(Y) + (P + ~)?Yn~,Y,x(Y)l YO = xo - R d3Y + O W 2 ) .  

(2.16) 
This result will be needed in $4 .  

3. Lense-Thirring effect 
We have calculated the approximate form of the metric for bodies that move at 

arbitrary speed. However, in many problems the speeds of the bodies are much 
less than the speed of light, and the equations of $ 2  can be considerably simplified. 
As an illustration, we calculate the metric due to a slowly rotating, spherically sym- 
metric mass distribution. The  effects of acceleration are again neglected, 

If in (2.15) (or (2.12)) one drops all terms that are of at least second degree in the 
velocity components V m ,  one finds 

guv(x) 1: q r t v  + S [ p ( ~ ) ~ - ~ ~ p ~ j u v  + (P + ~)auoavo - (P + q > ~ i  vm(y) 

x ( a , m ~ " o + a , m a ~ o ) ~ ] ~ a = ~ o - ~  d3y* (3.1) 
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We shall use (3.1) to calculate the components g,, of the metric of a spherically 
symmetric mass distribution that rotates rigidly with a constant angular velocity 
w = (wl, w2, w 3 )  about an axis of symmetry. The centre of the mass distribution 
is fixed at the spatial origin, so that its velocity at x is V(xo, x) = o x x. I t  follows 
that Vm and p in (3.1) are independent of yo.  

Define Y = 1x1 = (xmxm)l’’, s = /yJ = ( ~ ~ y ~ ) ~ ‘ ~ .  For fixed s one has 
R-l = I x - Y I - ~  = r - l ( l  + r - l s  cos 8+  O(Y-’?)) as Y + a, where 0 is the angle 
between x and y ,  and hence 

S p ( y )  V(y)R-’d3y cri Y - ~ O X  j ’ ~ ( ~ ) ~ d ~ y + r - ~ o x  J P ( Y ) S Y C O S ~ ~ ~ Y  (3.2) 

where the O ( Y - ~ S ~ )  term has been neglected. The first term of (3.2) vanishes because 
of the spherical symmetry, and the second is ~ I Y - ~ o  x x, where I = J p(y)s2 sin%’ d3y 
is the moment of inertia of the mass distribution about an axis of symmetry. Substi- 
tuting in (3.1) gives 

(3.3) 

The constants p and q were defined by (2.6). As explained in connection with 
equation (2.7), we must take q = 2GEcG2. The deflection of starlight by the Sun 
and the radar time-delay of Shapiro (1964) are both compatible with p = ~GECE’  
(Shapiro et al. 1968). With this choice, and with w ,  = ~ 8 ~ ~ ,  equation (3.3) becomes 

These are expressions for the non-diagonal components of the metric of a rotating 
body that were first derived by Lense and Thirring (1918), who used the linearized 
form of the Einstein field equations (see Landau and Lifshitz 1962-§ 103). We 
emphasize again that we have not assumed any field equations. Attempts are being 
made to test (3.4) by measuring the precession of a spinning satellite (Schiff 1960, 
Rastall 1966, Cooper et al. 1968). 

4. Gravitational field equations 
We have shown that, for an unaccelerated matter distribution, the components 

of the metric satisfy the approximate gravitational field equations (2.15) and the sub- 
sidiary conditions (2.16). If p = q = 2GE~;2, as assumed at the end of the last 
section, and if yynTuv,n = O(M2) (recall that ~v31Tuv ,n  = 0 in the Minkowski charts 
of special relativity, and that Tuv = O(M))  then (2.16) becomes 

(4.1) 1 
rlvng,v,n--2rlvngvx,Ll = 0 ( M 2 ) .  

Since g,, = rlUv + O(M),  we have guy = vUv + O(M), the Christoffel symbols are 
O(M),  and the components of the Ricci tensor are given by 

= 4rluY(guv,zn+gz3I,uv -gun ,? ,  -gz,,ux> + 0(M2) 
= Brluvgzn,uY - i (r luvgnu,v  -4rluvguv,n).z 

- 8 ( r l U V B Z V ,  U -2rlo”guv,z>,n + O(M2) .  
(4.2) 

1 

From (4.1) and (4.2) we find R,, = +TuzgUv,,,+ O(M2) ,  so the field equations (2.15) 
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can be written 
LZuv = - 4 TbV - *gLLvgx4 TxJ + O(M 2, (4.3) 

where K = SnGEcG4. The curvature scalar 9 is defined by @ = guVgLLv.  From 
(4.3), 9 = Kg"PT,,+0(-M2), and (4.3) has the alternative form 

If one omits the terms O(fM2) (including those in gUv- $gby9), then (4.4) become the 
linearized Einstein field equations. In  this approximate sense our metric is a solution 
of the linearized Einstein field equations. 

5. Conclusions 
The results that we have derived enable us to understand the relations between 

three different effects: the precession of the axis of a spinning satellite, the deflection 
of starlight by the Sun, and the time delay in the Shapiro radar experiment (Shapiro 
1964). We have shown that if the metric due to a particle fixed in a generalized 
Minkowski chart S A  is given by (2.7), then the non-diagonal components of the 
metric of a spherically symmetric, slowly rotating body are proportional to the 
constant p + q (equation (3.3)). The  precession of the axis of a spinning satellite then 
includes a term proportional to p + q. 

One can prove that the other two effects are determined by the same parameter 
p +  q. T o  make this plausible, let the equations of a light ray in S A  be 22 = fU(u), 
where fo ( (u)  > 0 for all U .  Define the speed of light in SA  to be 

c cE( f "(U)fm'(~))1'2/f ' ' ( U )  

where cE is the speed of light (a universal constant). Since the tangent to a light ray 
is a null vector, equation (2.7) implies that 

Thus light behaves in S A  as though space had a refractive index 

C E / C  1 + $(p  f q)yilmA. 

Because the metric due to the Sun is asymptotically of the form (2.7), one can take 
this to be the refractive index of space in the solar system. By simple arguments of 
geometrical optics, one now shows that both the light deflection and the time delay 
are determined by the refractive index, and hence by p +  q. (For a more complete 
argument see Dyson 1967). 

The  constant q is known, so the experiments will allow us to measure p in three 
independent ways. If the results are inconsistent, it may mean that the correct 
theory of gravitation is not of the traditional Riemannian type. On the other hand, 
it may only be that one of our assumptions about asymptotic behaviour is too strong 
(e.g. it is possible thatfi", in equation (2.3) is not O(L-2) ) .  
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